5 research outputs found

    A sensor view model to investigate the influence of tree crowns on effective urban thermal anisotropy

    Get PDF
    A sensor view model is modified to include trees using a gap probability approach to estimate foliage view factors and an energy budget model for leaf surface temperatures (SUMVEG). The model is found to compare well with airborne thermal infrared (TIR) surface temperature measurements. SUMVEG is used to investigate the influence of trees on thermal anisotropy for narrow field-of-view TIR remote sensors over treed residential urban surfaces. Tests on regularly-spaced arrays of cubes on March 28 and June 21 at latitudes of 47.6°N and 25.8°N show that trees both decrease and increase anisotropy as a function of tree crown and building plan fractions. In compact geometries, anisotropy tends to decrease with tree crown plan fraction, with the opposite in open geometries, though trees taller than building height cause anisotropy to increase for all building plan fractions. These results help better understand and potentially correct urban thermal anisotropy

    Cryobanking of viable biomaterials:implementation of new strategies for conservation purposes

    No full text
    Cryobanking, the freezing of biological specimens to maintain their integrity for a variety of anticipated and unanticipated uses, offers unique opportunities to advance the basic knowledge of biological systems and their evolution. Notably, cryobanking provides a crucial opportunity to support conservation efforts for endangered species. Historically, cryobanking has been developed mostly in response to human economic and medical needs - these needs must now be extended to biodiversity conservation. Reproduction technologies utilizing cryobanked gametes, embryos and somatic cells are already vital components of endangered species recovery efforts. Advances in modern biological research (e.g. stem cell research, genomics and proteomics) are already drawing heavily on cryobanked specimens, and future needs are anticipated to be immense. The challenges of developing and applying cryobanking for a broader diversity of species were addressed at an international conference held at Trier University (Germany) in June 2008. However, the magnitude of the potential benefits of cryobanking stood in stark contrast to the lack of substantial resources available for this area of strategic interest for biological science - and society at large. The meeting at Trier established a foundation for a strong global incentive to cryobank threatened species. The establishment of an Amphibian Ark cryobanking programme offers the first opportunity for global cooperation to achieve the cryobanking of the threatened species from an entire vertebrate class
    corecore